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Electromagnetic Waves in Waveguides

with Wall Impedance*
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Summary—A variational expression for the propagation constant
of the waves in waveguides with inhomogeneous media and with wall
impedance is presented. Using this expression, the shift of the propa-

gation constant due to the wall impedance is calculated. It is also
clarified how the removal of degeneracy takes place. Then the same
problem is dkcussed using another approach, a perturbation method.
The result is identical with that of the variational principle, as is to be

expected. In the final section, taking degenerate TEM modes as an

example, it is shown that appropriate choices of field configuration

are necessary when the formula for an attenuation constant derived
from the conservation of energy is applied to degenerate modes.

1. INTRODUCTION

T

HE ATTENUATION constant a of waveguides

due to the wall loss is usually calculated using the

law of conservation of energy, which gives the

formula

1 Wall loss per unit length of waveguide
~=— — . (1)

2 Transmission power

However, as Slater pointed out, 1 since the wall loss per

unit length is not necessarily additive, when two or

more waves exist simultaneously, the validity of the

above formula has to be re-examined. To avoid this dif-

ficulty, an attempt has been made by various authors

to solve Maxwell’s equations under appropriate linear

boundary conditions. Among them, Papadopoulos2 suc-

cessfully employed a perturbation method and obtained

the same expression as given above for nondegenerate

modes. Furthermore, he clarified how the removal of

degeneracy takes place when the wall loss is finite. In-

dependently of this work, Kurokawa3 found a varia-

tional principle for the propagation constant of the

waves in waveguides with wall impedance. The result

has been published in Japanese and hence not widel~

circulated. Later, Collin4 published a variational princi-

ple for the propagation constant of a TEM mode along

a transmission line. However, all of these treatments are

valid only when the medium is homogeneous.

* Recei~,ed January 22, 1962; revised manuscript received April
17, 1962.
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The objective of this paper is to investigate the propa-

gation of electromagnetic waves in waveguides with

inhomogeneous media and with wall impedances. This

is done using two different approaches; i.e., a variational

principle and a perturbation theorem. In Section II, the

vector wave equation for waveguides with inhomogene-

ous media is obtained. Then, in Section III, two ortho-

gonality relations are proved between the solutions of

this equation under the boundary conditions for perfect

conductor walls. These eigenfunctions can be used for

the expansion of an arbitrary function and hence for

the expansion of the field in waveguides with wall im-

pedances which do not satisfy the boundary conditions

for perfect conductor walls. The expansion coefficient

is given at the end of Section III. Section IV gives the

boundary conditions for the walls with finite impedances

and Section V the variational expression for the propa-

gation constant of the waves in waveguides with wall

impedances, from which the shift of the propagation

constant due to the wall impedances is calculated.

Using the expansion formula obtained in Section III and

the variational expression, the mechanism of the re-

moval of degeneracy}’ is also clarified in Section V. In

Section VI, the above results are compared with those

of the perturbation theorem which is slightly modified

from the original expression given by Papadopoulos.

Finally, in Section VI 1, taking degenerate TEM modes

as an example, it is shown that when (1) is applied to

degenerate modes, appropriate choices of field configura-

tion are necessary. Collin neglected the possibility of

degeneracy in his discussion and hence failed to clarify

this point.

II. \’~CTOR WAVE EQU~TION

The values of the dielectric constant e and magnetic

permeability N inside the waveguide under consideration

may depend on the transverse position (x, y), but they

are assumed to be independent of the longitudinal posi-

tion (z). For convenience, let us resolve the electric field

E and magnetic field H into two components, the trans-

verse component (subscript t) and longitudinal com-

ponent (subscript z). Then we have

E = (Et + kE,) ej”i–?z

EZ = (EZt + kH2) ej-~–~z (2)

where k is a unit vector in the longitudinal direction and

~ is the propagation constant. Substituting (2) into the

equations

YXE= –j@p.H, V x H = jweE (3)
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we obtain four eq~latious: s 1—&—(v. bztm) (v . GEh)ds

V x E, = – ju~kH, E

V x Elt = jm~kE,
{J

1
— Ymz —V x Etm. V x EtJS

yk X .Et + k X VE, = jwpH, w

yk X iYt +k X VH, = –jweEt. (4) —
f )

&cEtm . Et,LdS = O (9)

~~ext, substituting (2) into the equations

have
v.cE= 0, rpH = o (5)

where we used (8). Interchanging the subscripts m and

~zand subtracting the result from (9), we

which are obtained from (3), we ho~’e

{s1

V.CE, Z= y&,, F.PH, = -ypH,. ((j) (7m’ – 7.’) — V x Etm. V X E,,,dS
P

From (4) and (6), we elilrrinate E,, H,, H,. The result is

a vector wave equation for Et: -s&,Etm E,.dS} = 0.

1 1
,UV x—Vx Et —V -–-&.&- (m%p+y2)Et = O If ~~z#-y,,2, then

P c

(in S), (7)
J

1
-–VX E,.. VX Et.dS– sw’&~ . E,,,dS = O. ( 10j
W

where S means the cross section of the waveguide. The

boundary condition for perfect conductor walls is given This is equivalent to the orthogonality relation5

by the following two equations:
P

F’EE,=O, nXEi=O (on 1), (8)
J

k . Etm X H,.dS = O (11)

where 1 means the periphery of S ancl n is an outer

normal unit vector. For the ideal waveguide, solving (7)

under the condition (8) and inserting the result into (4)

and (6), all the field components can be obtained. If we

eliminate E,, H. and Et insteacl of E,, H, and Ht from

(4) and (6), we have a vector wave equation for H,

similar to (7). However, the discussion using Ht goes in

parallel with the one using Et, giving no new results,

hence we shall concentrate on Et onl}-.

III. OKTIIOGON.\I.ITY REL.iTIONS

There are two orthogonality relations between the

solutions of (7) which satisfy- the condition (8). To de-

rive these relations, let us write one of the solutions as

Etm and another as Etn. The corresponding propagation

constants will be written as Tm and T., respectively.

Since Etm satisfies (7),

1 1
PT X — V X Etm -- V—- V.cEtm — ~ti2W + -y,,,2)Etn, = O

!-f e

Taking a scalar product

(
1

V;K— ’7
P

and integrating over the

which has been derived by AdlerG using a different ap-

proach. To check the relation (11), using (4) we write

Ht,, in terms of Etn:

–1

(

1
kXHtn=—

)
VX— VXEtn —W2eEtn . (12)

jay. #

Combination of (11) with (12) gives

S
k . E,m x Ht,,dS

1

{J
1— —Vx Etm. V x Et.dS

jwfn w

-f
w2@% . EtndS

}
=0

m-hich is equivalent to (10).

10 case (10) is satisfied, from (9) we have

(in S). S( 1~V X —–V X Etm — tAEtm
P )

with

(

1

‘1
)

- V X — V X Et,, – OJ2CEtn dS
x Et. – @eEt,, w

/

cross section S, ~re obtain

J( 1
/.t VX— VXEtrn-m2eEtnt

K )

( )
V X L V X E,. – &E,m dS

!J

6 ‘~he illtegrand is not k. Etmx Htm*, hence (11) is not necessarily

equivalent to the orthogomdit y relation between powers carried by
each mode.

$ R. B, Adler, ~<waves on inhomogeneous cytincrical Structul-es, ”

PROC. IRE, vol. 40, pp. 339–348; March, 1952.
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This is another orthogonality relation between Etm and

E,.. As we can easily see from (4), (6) and (12), (13)

corresponds to the orthogonality relation between

the Hta’s

s 1
—Vx H,m. VXH,ndS–

s
&’pHtm .H,,,(LS = O (11)

e

which is a dual form of (10).

In case E,m and Et. are degenerate, yfi’ = T.’ and the

orthogonality relation (10) does not necessarily hold.

However, it is always possible to choose the modes so

as to satisfy (10). Further, the derivation of (14) guaran-

tees that, if the E~m’s are selected to be orthogonal to

each other, the corresponding Hta’s become automati-

cally orthogonal to each other and vice versa.

The above orthogonality relations will be used several

times later and, since their expressions are lengthy, we

shall introduce abbreviations P(rn, n) and Q(%, n) given

by

and the orthogonality relation

()(??’2, ?2) = o (m # ?2)

we can determine the expansion coefficients c.’s:

c. =
&{Q(a’2’-f :nX Et~” —VX Etndl } . (19)

One may be tempted to multiply both sides of (17)

by eEtn and integrate over .S. However, this gives no

useful relations to determine en’s, since in general

s
cEtm . Et.dS # O.

IV. WAIL IMPED.4NCES

In the previous sections, the waveguide walls are

assumed to be perfect conductors. Let us now introduce

wall impedances Z1 and Zz defined by

H 1
P(wz7 )z) = p V X — V X Etm — u2cEtm

)
ZIHt = n X kE.

!J
ZzkH, = n X Et )

(on 1).

(

(20)

)
. Vx~Vx Et. –o)%Etn dS

P ZI and Zz may be two different functions of the position

J
1 along 1 but they are assumed to be independent of z.

— c02 — V ~eEtmV . cEtndS (15) Z, represents the wall impedance against the current
e

flowing in the longitudinal direction and Zz in the trans-

Q(m, n) = s~V X E,m. V X Et.dS

w

—sw%Etm . EtndS.

verse direction. Using (4) and (6), (20) can be rewritten

in terms of Et only:

(16)
1 ZI

(

1
n—V. cEt=— TVX— VXEt —m2cEt

e jm IJ )

When expanding an arbitrary function E,. in terms of (on 1) (21)

the Etn’s as’
Z2 1

Eta = ~ cnEtn (17) nXEt=—7—v XEt.

n J(I /.l

we multiply the both sides of (17) by Therefore, our problem is reduced to that of solving (7)

(

1

)

under the boundary condition (21).

vx—vx Et. —ti2eEtn , If we set both ZI and ZZ equal to zero, (21) becomes
P (8) which corresponds to perfect conductor walls. In

and integrate over S. Using the equation case the waveguide has ordinary conductor walls, Z1 and

J(

Zz become the characteristic impedance of the wall

E,. .
)

V X L V X E,. – CO’EE,. dS material.

N

s V. VARIATIONAL. PRINCIPLE FOR TZ
= Q(a, ?2) – n X Et~.L V X E,~dl (18)

Y Let us consider the relevance

7 n X Eta is not necessarily zero and Et. can be a field function in
a waveguide with wall impedances. and take the variation. A little manipulation shows that



1962 Kurokawa: Waveguides

( 1

)
VX— VX6E, –W%E, dl

w

If E, satisfies both (7) and (2 1), then the right-hand side

of (23) becomes zero and hence ~~~ becomes zero pro-

vided that

sA (V x Et)’dS –
J

w%Et%LS # O. (2A)
w

Furthermore, if the first-order variation 6-Y’ of the ex-

pression (22) is zero for all possible deviation 6Et from

a certain Et, then from (23) we see that such an Et satis-

fies (7) and (21) simultaneously. Thus we conclude that

(22) is an appropriate variational expression for T’.

Now let us assume that the magnitudes of ZI and Z~

are both small and that there exists a solution Et. of

(7) and (21) in the vicinity of E,p, one of the eigen-

functions Etn’s of the ideal waveguide. Then, substi-

tuting Etr in (22), we obtain the first-order approxi-

mation of the propagation constant -ya of Et. through

the relation

m, P) + Z1(P, P)
2=

-r. —

W, f) + Z2(P, P)

W, p) 21(P, P) P(p, p)z,(p, p)

= Q(P, pi + (?(P, P) – Q(P> P)Q(P) P)

where Zl(p, p) and Z?(P, p) are given by setting both

w and n equal to p in the expressions

and

Z2(}?2, n) =
; :v’xEt*l)”(:TxE’od” ’27)J(

res~ectivelv. The second terul on the right-hand side of

(2;) corresponds to the shift of the prop~~gation constant
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clue to the wall impedances. The solution Et. can be

expressed as a linear cotnbination of the eigenfunct ions

Et.’s of the ideal waveguide provided that they are

complete:

Ete = EtP + ~ c,LEt,,. (28)
,,F ~,

To determine cP, we substitute Etc+ticnEtm in (22). ”

Since E,. is a solution of (7) and (21), the variation &y”

due to &,,Et,, must be zero. Thus, we have

~7, = z j~(% JL) 21(% JJ) 1>(% a)Q(a, }1)
“—--+ ‘—— – —

~Q(a, a) Q(~, ~) Q(a, a)Q(a, a)

Using the relations

P(a, n) = -f),’Q(a, }2)

P(a, a) = ‘Y,2Q(% a)

which c+m be obtained from (9), (29) shows that

Q(a, n) = --;-= { z,(p, n) – ‘yP’z,(p, 7L)~. (30;)
~l,z

— Yn’

Combination of (19) with

()(a, n) + Z,(a, }1)
c,, =

Q(Jz, ?Z)

1 1,
.

(30) gives

, ~Z,(p, ?2) – -yrt’z,(p, /z)}. (31:)
Q(72, )2) 7P’ – ‘y.

If Yrz = ynz, that is, if the modes n and P are degenerate

the corresponding C. given by (31) becomes infinite. g

Therefore, we have to employ a different approach, FoI-
simplicity, first let us consider the case of two-fold de-

generacy. Let Eta and Efb be the degenerate mode!;

which are orthogonal to each other and of which the

magnitudes are so chosen the Q(a, a) = Q(tr, b). Now we

assume an appropriate form of the solutions of (7) and

(21) as

Et = .4 E,. + ~Etb

+ (first- and higher-order terms of Z, and Z,) (32)

ancl determine the coefficient .-1 and B. Since only the

ratio between A and B is to be determined, we impose

the condition .4 ‘+B2 = 1. Substituting (32) in (22)1 and

using Lagrange’s method of multipliers to obtain the

condition dyt = O, we have

.4 = Cos 0, B=sinfl (33)

~ Do nt substitute the right-hand sicle of (28) in (22) di]-ectly,
since the tern-by-term difi”crentation does not necessarily gi,:e the
correct answer.

g tt7hen the frequency approaches the critical ~alue beyond whic]l
the cutoff phenomena takes place, Q(:, ~~) approaches zero. Howeve],
a little manipulation shows that the hmiting value of the right-hand
side of (31 ) rem<tins finite.
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and VI. PERTURBATION THEOREM

A=–sin O, B = COS o, (34) In this section we shall consider a perturbation

method and compare the result with that of Section V.
where @is given through the relation Assuming the existence of a solution Eta of (7) and (21)

2 [ Z,(a, b) –yz2Z,(a, ~)} in the vicinity of EtP, one of the eigenfunctions Et.’s for

‘a” 2e={z1(a, a)-Z,(b, b)} -y=’{ z2(a,a)-Z,(b, b)} “ (35) the ideal waveguide, we shall first calculate the propm

gation constant. Since E,. is a solution of (7),

Thus we see that the correct solutions E,. and Elb must

be in the vicinity of

EiP = cos OEt. + sin ~E~b (36)

and

E,~ = – sin %Et. + cos $Etb (37)

respectively. The propagation constant of each mode is

given by (25), provided that Et, in (25) is replaced by

(36) and (37) respectively. In some cases, the right-hand

side of (35) becomes undetermined. This means that the

first-order removal of degeneracy due to the wall im-

pedances does not take place and that an arbitrary

~~alue can be assigned for 6. TEII modes in circular wave-

guides with uniform wall impedances is an example.

Next, assuming the completeness of the Et,,’s, we

expand Et. and E~6 as follows:

1 1
WV X —Vx Et. — V—V. eEte — (CJ2qJ+ y&2)Et. = 0.

P e

.Multiplying by

( 1

)
V X — V X E{,, — &cEtn ,

#

and integrating over S, we have

-Ya’Q(~, ?L) + P(a, V) + Zl(a, ~J – ~.~.zz(~, n) = o (42)

where we used (21). If we interchange the subscripts a

and n before the integration is performed, we have

‘Yn2Q(% ?2) + P(a, 7L) = o. (43)

Subtraction of (43) from (42) gives

(7.2 – ‘Y.2)Q(% ?2) = 21(% 72) – ‘Ya’-Z2(a, ?L). (44)

Let us first set n equal to P. Since Etn = Ete, we obtain.

Then the expansion coefficients c.’ and cm” must be
the same expression as (25):

small in magnitude. c.’ and c.” are given by (31) pro-
7.2 — 7P% = ~ { Zl(a, ~) - -y.zz,(a, p) ]

vialed that the EtP is replaced by (36) and (37) respec- ()(a, 0)

tively. EtP and Etq defined by (36) and (37) are orthog-
. . . . .

onal to each other, i.e.,
1

Q(P, q) = ~(p, q) = 0. (40)
= Q(P, P)

Furthermore, they satisfy the following equation:
When n #@, (44) gives

-Z-1(P, q) – Y,’z-,(p,q) = 0. (41) Q(oJ, YZ)= 1

24s we see from (31), (41) means that there is no coupling
‘Y. 2 – ‘Yn2

1

21(P, P) – 7.222(P>P)}

Z,(CY>n) – ya’z,(a, ?2)}

between Et, and Etq through the wall impedances. Any ~ ‘ {Z,(p, n) - ~p’z,(p, n)}
other combination of Eta and E~b cannot satisfy this 7P2 — YIL2

condition. Threfore, we cannot choose such a field as

an approximate form of a mode which has an inde-

pendent propagation constant.

In the case of multiple degeneracy, we assume the

form of solutions as follows:

E, = .4 Et. + BEtb + CE,C+ . . .

+ (first- and higher-order terms of ZI and 22),

Under the condition .4 ‘+ B’+ C’+ . . . =1, the co-

efficients .4, B, C, . . . will be determined so as to

satisfy C?yz= O. The rest of the argument given above for

two-fold degeneracy does hold equally well in this case

and no further discussion may be required.

(45)

(46)

which is to be compared with (30).

When two modes E,. and E!b are degenerate, we re-

place Eta in (44) by (32). Setting n equal to a and to b,

we have

(~.z – y~2) AQ(a, a) = .4{ Z~(a, a) – 7p’Z,(a, a) }

+ B{ Z,(b, U) – TP’Z,(b, a) }

1

(~.’ – ~,’)~Q(b, b) = ~{ZI@, U) – Y~2zz(b> U) }

(47)

+ B{ Z,(b, b) – yp’Z,(b, b))

The condition that at least one of the coefficients A and

B has nonzero value gives (33), (34) and (35). Thus we
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see that the results obtained by the variational principle where

and the perturbation theorem are identical, as is to be

expected. 211 = ZM? = : log ~

The perturbation method originally developed by ‘t’

Papadopoulos is based on the orthogonality relation 20
212 = Zzl = ~ log ~

P c

JE,m . Et,LdS = O (m # 72)

All = .422 = ;+;;

which does hold between the modes in waveguides with
e

homogeneous media. However, its extension does not 2/2
.412 = A.zl= ~= .

exist, as we explained at the end of Section III. There-

3119

(51)

fore, in the above discussion, we had to use Q(m, n)= O,

(m #n) which is equivalent to (1 1). 26 and Z, m-e the characteristic impedances of the

ground and wires, respectively.

VI 1. EXAMPLIZ

As an example of the removal of degeneracy, let us

consider the waves traveling along two parallel wires

above ground. The configuration is shown in Fig. 1. If

we assume that the wires as well as the ground are per-

fect conductors, then the fields E, and H, are expressed

in terms of a scalar potential function @ which satisfies

Laplace’s equation Vz+ = O (in S) and the boundary con-

dition + = constant (on 1) (for each conductor we can

assign a different value):

E, = V@, H,=&k XV+ (48)

EOand MO are the dielectric constant and magnetic per-

meability of the space, respectively. Since there are two

wires whose potential can be specified independently,

there are two independent functions @ and correspond-

ingly two independent waves. Their propagation con-

stants are the same and given by

The deviation Ay of the actual propagation constant y

from YO due to the wall impedances can be calculated by

inserting Et of (48) in (22). The final result is

tkp 2mZ, ~ dl
~7 = ~– 702 1

(’!9)
27 = 220

f (V@)2dS
.)

Eq. (49) can be rewritten in terms of the currents 11 and

1, flowing through the wires:

Ze AH112 + 2A121112 + A22122
Ay= —-—

23r Z11112 + 2Z121J2 + Z22122 ‘
(50)

I
I
I
I \l

Fig. l—Wire configuration.

Since the original waves are degenerate, for the cal-

culation of AT the ratio between II and 1~ must be chosen

so that Tz, hence Ay, has a stationary value. The method

of undetermined multiplier shows that this condition is

satisfied when

and when

I, = Il. (53)

The corresponding Ay’s are given by

z. All– AH
A-yl == —

27r 211 – 212
(54)

and

2. All + A12
Ayz = — —— (55)

2T .211 i- Z12

respectively.

When arbitrary currents I, and J, are flowing through

the wires, they must be interpreted as shown in Fig. 2,

i.e., the sum of the two independent modes given by

(52) and (53). Since the propagation constants of these
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Fig. 2—Decomposition into two independent modes.

Fig. 3—a git-en by ( 1) IS current ratio,

modes are not the same, the current ratio, hence the

field configuration, changes as the observation point

moves along the wires. Only the currents satisfying

either (52) or (53) can keep their ratio unchanged.

If the current ratio is real, the real part of the right-

hand side of (5o) gives exactly the same expres-

sion as that of (l). Depending on the current ratio,

therefore, (1) gives a value something like Fig. 3. How-

ever, only two values, a~~~ and arni., give the true at-

tenuation constants corresponding to the independent

modes discussed above. Thus, we see that a special care

must be taken when (1) is applied to degenerate modes,

even though they are TEIVf modes. Collin4 neglected the

possibility of degeneracy in his discussion and hence

failed to clarify the point mentioned above.

VIII. CONCLUSION

A variational expression for the propagation constant

of the waves in waveguides with inhomogeneous media

and with wall impedance is presented. Using this ex-

pression, the shift of the propagation constant due to

the wall impedances is calculated. It is also clarified how

the removal of degeneracy takes place. The result is

compared with that of a perturbation theorem. In

Section VI 1, taking degenerate TEM modes as an

example, it is shown that appropriate choices of field

configuration are necessary when the formula for the

attenuation constant derived from the conservation of

energy is applied to degenerate modes.
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