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Electromagnetic Waves in Waveguides

with Wall Impedance’

KANEYUKI KUROKAWAY, MEMBER, IRE

Summary—A variational expression for the propagation constant
of the waves in waveguides with inhomogeneous media and with wall
impedance is presented. Using this expression, the shift of the propa-
gation constant due to the wall impedance is calculated. It is also
clarified how the removal of degeneracy takes place. Then the same
problem is discussed using another approach, a perturbation method.
The result is identical with that of the variational principle, as is to be
expected. In the final section, taking degenerate TEM modes as an
example, it is shown that appropriate choices of field configuration
are necessary when the formula for an attenuation constant derived
from the conservation of energy is applied to degenerate modes.

I. InTRODUCTION

HE ATTENUATION constant « of waveguides
Tdue to the wall loss is usually calculated using the

law of conservation of energy, which gives the
formula

1 Wall loss per unit length of waveguide 1)
p— .

2 Transmission power

However, as Slater pointed out,! since the wall loss per
unit length is not necessarily additive, when two or
more waves exist simultaneously, the validity of the
above formula has to be re-examined. To avoid this dif-
ficulty, an attempt has been made by various authors
to solve Maxwell's equations under appropriate linear
boundary conditions. Among them, Papadopoulos? suc-
cessfully employed a perturbation method and obtained
the same expression as given above for nondegenerate
modes. Furthermore, he clarified how the removal of
degeneracy takes place when the wall loss is finite. In-
dependently of this work, Kurokawa?® found a varia-
tional principle for the propagation constant of the
waves in waveguides with wall impedance. The result
has been published in Japanese and hence not widely
circulated. Later, Collin* published a variational princi-
ple for the propagation constant of a TEM mode along
a transmission line. However, all of these treatments are
valid only when the medium is homogeneous.
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The objective of this paper is to investigate the propa-
gation of electromagnetic waves in waveguides with
inhomogeneous media and with wall impedances. This
is done using two different approaches;{.e., a variational
principle and a perturbation theorem. In Section II, the
vector wave equation for waveguides with inhomogene-
ous media is obtained. Then, in Section I1I, two ortho-
gonality relations are proved between the solutions of
this equation under the boundary conditions for perfect

. conductor walls. These eigenfunctions can be used for

the expansion of an arbitrary function and hence for
the expansion of the field in waveguides with wall im-
pedances which do not satisfy the boundary conditions
for perfect conductor walls. The expansion coefficient
is given at the end of Section III. Section IV gives the
boundary conditions for the walls with finite impedances
and Section V the variational expression for the propa-
gation constant of the waves in waveguides with wall
impedances, from which the shift of the propagation
constant due to the wall impedances is calculated.
Using the expansion formula obtained in Section 111 and
the variational expression, the mechanism of the re-
moval of degeneracy is also clarified in Section V. In
Section VI, the above results are compared with those
of the perturbation theorem which is slightly modified
from the original expression given by Papadopoulos.
Finally, in Section VII, taking degenerate TEM modes
as an example, it is shown that when (1) is applied to
degenerate modes, appropriate choices of field configura-
tion are necessary. Collin neglected the possibility of
degeneracy in his discussion and hence failed to clarify
this point.

1I. VEcTor Wave EQuaTiON

The values of the dielectric constant € and magnetic
permeability p inside the waveguide under consideration
may depend on the transverse position (x, y), but they
are assumed to be independent of the longitudinal posi-
tion (2). For convenience, let us resolve the electric field
E and magnetic field H into two components, the trans-
verse component (subscript ¢) and longitudinal com-
ponent (subscript z). Then we have

E = (E; + kE.)evt =
H = (H, + kH,)e/otz 2)
where k is a unit vector in the longitudinal direction and

7 is the propagation constant. Substituting (2) into the
equations

VX E = — jouH, V X H = jweE 3)
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we obtain four equations:
VX E, = — juukH.
V X H, = jwek E.
vk X E,+ k X VE, = jouH,
vk X H,+k X VH, = — jweE,. €))

Next, substituting (2) into the equations

VieE=0, V-uH-=0 (5)

which are obtained from (3), we have
V-eE; = vel,, V-uH; = yuH.. (6)

From (4) and (6), we eliminate E., A., H,. The result is
a vector wave equation for E;:

1 1
uV X —VXE, —V-—V-eE, — (% + yHE;, = 0
" €

(inS), (1)

where S means the cross section of the waveguide. The
boundary condition for perfect conductor walls is given
by the following two equations:

VeeE, =0, nXE =0 {onl), (8)

where [ means the periphery of S and n i1s an outer
normal unit vector. For the ideal waveguide, solving (7)
under the condition (8) and inserting the result into (4)
and (6), all the field components can be obtained. If we
eliminate E,., H, and E; instead of E., H, and H, from
(4) and (6), we have a vector wave equation for H,
similar to (7). However, the discussion using H; goes in
parallel with the one using E;, giving no new results,
hence we shall concentrate on E; only.

ITI. ORTHOGONALITY RELATIONS

There are two orthogonality relations between the
solutions of (7) which satisfy the condition (8). To de-
rive these relations, let us write one of the solutions as
E,, and another as E;,. The corresponding propagation
constants will be written as v, and 7,, respectively.
Since E,, satisfies (7),

1 1
uV X —VX Ep —V— V-eEy —
o €

(wge# + ‘YmQ)Etm - 0
(in .5).
Taking a scalar product with

1
<V7 :>< —V X Etn - wZEEiN>
“

and integrating over the cross section .S, we obtain

1
f/.t <V X —V X Etm - wzeEtm>
M
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— f&)z —_ (VEEtm)(VéEtn)dS
€

1
- 'Ym2{f—v X EyV X EudS
7

- f w‘“’eE;m- EtndS} = (9)

where we used (8). Interchanging the subscripts m and
n and subtracting the result from (9), we have

. ) 1
(’le - 'Yn.z) {f
I

—V X Etm'v X EtndS

- f (J.)EEEtm‘ EtndS} = 0
If vm2#v.,2, then

1
f — VX Ein'VX E;dS — w¥Ey,- E,dS = 0. (10)
“

This is equivalent to the orthogonality relation®

fk~Em><HmdS: 0 (11)

which has been derived by Adler® using a different ap-
proach. To check the relation (11), using (4) we write
H,, in terms of E;,:

—1 1
k X H, = —,—~<v X —V X Epn — wﬁeE,n>. (12)
JWYn M

Combination of (11) with (12) gives

fk : Etm X thdS

1 1
JWYn M
— f wZGEtm' EmdS} = O
which is equivalent to (10).

In case (10) is satisfied, from (9) we have

1
f/x <V X —V X Etm - wzeE,m>
73

1
-<V X —V X E,

— wzeEm> ds
I

1
[t L5 B eBaas = 0. ()
€

5 The integrand is not k- Eu X Hin*, hence (11) is not necessarily

equivalent to the orthogonality relation between powers carried by
each mode.
8 R. B. Adler, “Waves on inhomogeneous cylincrical structures,”

1
A VX —VXE
( " Proc. IRE, vol. 40, pp. 339-348; March, 1952.

— w‘“’eEm> as
u



316

This is another orthogonality relation between E;, and
E,.. As we can easily see from (4), (6) and (12), (13)
corresponds to the orthogonality relation between
the H..'s

1
f - V X Htmv X thdS - fw?‘,thm'thdS = 0 (14)
€

which is a dual form of (10).

In case E;, and E., are degenerate, v,>=7,* and the
orthogonality relation (10) does not necessarily hold.
However, it is always possible to choose the modes so
as to satisfy (10). Further, the derivation of (14) guaran-
tees that, if the E;,’s are selected to be orthogonal to
each other, the corresponding H;,'s become automati-
cally orthogonal to each other and vice versa.

The above orthogonality relations will be used several
times later and, since their expressions are lengthy, we
shall introduce abbreviations P(m, n) and Q(m, n) given
by

1
Plm, n) = fu (V X —V X Eup — wzeEtm>

"

1
-(V X —V X Eyy — w‘“’eEm> as

Jr
i
— w? V eE,V-eE,dS (15)
€
1
Qlm, 1) :f — VX Ein-V X E.dS
“
— f @?¢Eyn- EnndS. (16)

When expanding an arbitrary function E,, in terms of
the E;.’s as”

Eta =

Z CnEtn

3

(17)
we multiply the both sides of (17) by

1
<V >< —V X Etn _ wZGEtn>,
"

and integrate over S. Using the equation

1
f Eia‘<v >< — V >< Etn —_ (UQEEM> dS
M

1
= Qla, n) ~fn X Ep-— V X Endl  (18)

I
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and the orthogonality relation
Qlm, n) =0 (m = n)

we can determine the expansion coefficients ¢,’s:

Cn

- 1 1 l
= 0(n. ) {Q(a, n) — f n X Eta-_ﬂ_v X Et"dlf . (19)

One may be tempted to multiply both sides of (17)
by €E:, and integrate over S. However, this gives no
useful relations to determine ¢,’s, since in general

fﬁEtm'EtndS # 0

IV. WALL IMPEDANCES

In the previous sections, the waveguide walls are
assumed to be perfect conductors. Let us now introduce
wall impedances Z; and Z, defined by

Z\H; = n X kE,
(on 1). (20)
szHz = n >< E; .

Z; and Z, may be two different functions of the position
along / but they are assumed to be independent of sz.
Zy represents the wall impedance against the current
flowing in the longitudinal direction and Zs in the trans-
verse direction, Using (4) and (6), (20) can be rewritten
in terms of E, only:

1 Z 1
I‘I—V'GEtZ I VX——VXEt—wQeEt>
€ Jw i
(onl) (21)
Zy 1
nX E;= —— — VX E,.
Jw K

Therefore, our problem is reduced to that of solving (7)
under the boundary condition (21).

If we set both Z; and Z, equal to zero, (21) becomes
(8) which corresponds to perfect conductor walls. In
case the waveguide has ordinary conductor walls, Z; and
Z, become the characteristic impedance of the wall
material.

V. VARIATIONAL PRINCIPLE FOR 72

Let us consider the relevance

1 2 1 Z 1 2
f,u(VX*VXEt—wzeEt) dSwfwz——(V'eEt)‘“’dS-{—f ;(VX—VXE;—wgeEt> dl
I € Jjw

o

- (22)

Y

7 n X Ey, is not necessarily zero and E;, can be a field function in
a waveguide with wall impedances.

1 Zy /1 2
f — (VX E;)%dS — waeEtzdS +f f<~*v X Et> dl
M : Jo\ i

and take the variation. A little manipulation shows that
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1
572{f " (VXEt)ZdS—fwl’eEﬁdS}

1 1
:zf {uvx4 VXE,—V— v-eEl—<w‘3eu+72)Ez}
" €

1
. <VX— VXBEt—wgeéEt> das
M

1 Z1 1
+2f {n——V-eEt—}—f VX— VX E;~wE;
€ Je p

1
u

Zy 1 1
_272f<n><Et+,— —v><Et>-V><6Ezdl- (23)

Jo u n
If E, satisfies both (7) and (21), then the right-hand side
of (23) becomes zero and hence 6> becomes zero pro-
vided that
1
f — (VX E)dS — fwﬂeEﬂdS = 0. (24)
u
Furthermore, if the first-order variation 6y? of the ex-
pression (22) is zero for all possible deviation ¢E, from
a certain E;, then from (23) we see that such an E; satis-
fies (7) and (21) simultaneously. Thus we conclude that
(22) is an appropriate variational expression for 2.
Now let us assume that the magnitudes of Z; and Z,
are both small and that there exists a solution E;, of
(7) and (21) in the vicinity of E;,, one of the eigen-
functions E:.'s of the ideal waveguide. Then, substi-
tuting Eg, in (22), we obtain the first-order approxi-
mation of the propagation constant vy, of E,, through
the relation

. P(p, p) + Za(p, p)
00, p) + Za(p, p)

Qp,p)  Qp, p) Q(p, PO(p, p)
1
== p2 + —— {4 5 ) — pQZZ( i ) 25)
Y Q(p,p){ (b, ) — v°Zo(p, D)} (

where Zi(p, p) and Zs(p, p) are given by setting both

m and # equal to p in the expressions
A 1 .
Zi(m, n) = Jr —| VX —VXE, — weEy,
Jw M

1
-<v X —V X E, — (26)

w'zeEM> dil
M

and

Zyf 1 1 ,
Zolm, n) = f - < VX Etm>-< v X E,,,) dl (27)
Jo\u u

respectively. The second term on the right-hand side of
(25) corresponds to the shift of the propagation constant
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due to the wall impedances. The solution E;, can be
expressed as a linear combination of the eigenfunctions
E,’s of the ideal waveguide provided that they are
complete:

Eta = Etp + Z C:LEtn-

ny=p

(28)

To determine ¢,, we substitute E,+6c.E;, in (22).%
Since E,, is a solution of (7) and (21), the variation §y*
due to 6¢,E;, must be zero. Thus, we have

5’)/: = 2 jl)(a, Il_} Zl((l, ﬂ) _ IJ(CV’ Q)Q(Ol, ”)
2 .Q(Oé, ) Qla, a) Ole, a)Q(a, a)
_ PleyaZelamy g
Q(Ol, CZ)Q(O[, a)!

Using the relations
P, n) = v,*Qle, 1)
Pla, a) = v,*Q(a, a)
which can be obtained from (9), (29) shows that
0o 1) = ——— [ Zalp, ) = 2 Zalp )} (300
Yo~ T Ya
Combination of (19) with (30) gives
Qley 1) 4 Zala, )

6(11, n)
1

Qln,n) vp* — va*

Cn

{Zl(?, ”) - ’YnzZ'Z(P, )1)} . (31)

If v,?=1.% that is, if the modes # and p are degenerate
the corresponding ¢, given by (31) becomes infinite.®
Therefore, we have to employ a different approach. For
simplicity, first let us consider the case of two-fold de-
generacy. lLet E, and Ey be the degenerate modes
which are orthogonal to each other and of which the
magnitudes are so chosen the Q(a, a) = Q(d, b). Now we

assume an appropriate form of the solutions of (7) and
(21) as

E,= AE, + BEy,
-+ (first- and higher-order terms of Z; and Z.) (32)

and determine the coefficient 4 and B. Since only the
ratio between A and B is to be determined, we impose
the condition A%+ B%=1. Substituting (32) in (22) and
using Lagrange’s method of muwultipliers to obtain the
condition §y2=0, we have

A = cos b, B =siné (33)

3 Do ot substitute the right-hand side of (28) in (22) directly,
since the term-by-term ditferentation does not necessarily give the
correct answer.

9 When the frequency approaches the critical value beyond which
the cutofl phenomena takes place, Q(#n, #) approaches zero. However,
a little manipulation shows that the limiting value of the right-hand
side of (31) remains finite,
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and
A= —sin#, B = cos 0, (34)
where # is given through the relation
2{Z1(a, b) —v,2Zs(a, b
tan 26= (Z1le, b) =7y 2a(e )} . (35
{Z1(a,0) = 210, 8)} —7,*{ Z2(a, @) — Za(b, 1) }

Thus we see that the correct solutions E;, and E,; must
be in the vicinity of

E,, = cos0E;, + sin6E; (36)

and

Ey = — sin0E,, + cos0E; 37

respectively. The propagation constant of each mode is
given by (25), provided that E,, in (25) is replaced by
(36) and (37) respectively. In some cases, the right-hand
side of (35) becomes undetermined. This means that the
first-order removal of degeneracy due to the wall im-
pedances does not take place and that an arbitrary
value can be assigned for 8. TE;; modes in circular wave-
guides with uniform wall impedances is an example.

Next, assuming the completeness of the E;’'s, we
expand E;, and E; as follows:

Ew=Ep+ 2, ¢/En (38)
na,b
Eg=Ey+ 2 ¢ Eu. (39)
nyq,b
Then the expansion coefficients ¢,” and ¢,”” must be

small in magnitude. ¢,” and ¢,’" are given by (31) pro-
vided that the E,, is replaced by (36) and (37) respec-
tively. Ey, and E;, defined by (36) and (37) are orthog-
onal to each other, z.e.,

Q(p, 9 = P(p, 9 = 0. (40)
Furthermore, they satisfy the following equation:
Zi(p, @) — 7' Z2(p, @) = 0. (41)

As we see from (31), (41) means that there is no coupling
between E,, and E,, through the wall impedances. Any
other combination of E,, and E, cannot satisfy this
condition. Threfore, we cannot choose such a field as
an approximate form of a mode which has an inde-
pendent propagation constant.

In the case of multiple degeneracy, we assume the
form of solutions as follows:

E, = AE; + BEy + CE;. + -
+ (first- and higher-order terms of Z; and Z,).

Under the condition 42+B*+4+C?2+ - - - =1, the co-
efficients A4, B, C, - - - will be determined so as to
satisfy 6y2=0. The rest of the argument given above for
two-fold degeneracy does hold equally well in this case
and no further discussion may be required.
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VI. PERTURBATION THEOREM

In this section we shall consider a perturbation
method and compare the result with that of Section V.
Assuming the existence of a solution Ey, of (7) and (21)
in the vicinity of Ey,, one of the eigenfunctions E,,’s for
the ideal waveguide, we shall first calculate the propa-
gation constant. Since E;, is a solution of (7),

1 1
,UV x—‘VXEza"“V*V‘EEta— <w26u+7a2)Eta: 0
M €

Multiplying by
1
VX —VX Eln - wQeEm),
M
and integrating over S, we have

ve'Qle, n) + Play, n) + Zi(a, n) — va'Za(e,m) = 0 (42)

where we used (21). If we interchange the subscripts «
and # before the integration is performed, we have

v Qla, n) + Pla, 1) = 0. (43)
Subtraction of (43) from (42) gives
(7&2 - 'Yn2)Q(aa 7Z) = Zl(o‘7 ﬂ) - 7a2Z2(a’ 71’)- (44)

Let us first set # equal to p. Since E,, = E,,, we obtain
the same expression as (25):

1
ol = ¥t = —— 1 Zi(e, — v Zs(a,
v v Q(a,;b){ (o, §) — va2Zsla, p)}
1
A 7P, p) — v Zo(p, p)}. (45
057 (5, 0) — vo?Zo(p, p)}.  (45)
When n#=p, (44) gives
1
Q(Oé, %) = ﬁ {Zl(aa ll) - ’YaZZZ(a} ﬂ)}
Yo T Yn
1
~ A Zi(p,n) — v Zo(p,m)}  (46)

'YpZ — Yn

which is to be compared with (30).

When two modes E;, and Ej are degenerate, we re-
place E;, in (44) by (32). Setting % equal to ¢ and to b,
we have

(7> — vp)A40Q(a, @) = A{Z:(a,a) — v,2Z2(a, a)}
+ B{Z.(b, a) — v,2Z5(b, a)} (a7
(va® — v,1)BO(b, 0) = A{Z:(b, @) — 7,2 Za(b, )} |
+ B{Z:(b, b) — 7,°Zs(b, b)}
The condition that at least one of the coefficients 4 and
B has nonzero value gives (33), (34) and (35). Thus we
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see that the results obtained by the variational principle
and the perturbation theorem are identical, as is to be
expected.

The perturbation method originally developed by
Papadopoulos is based on the orthogonality relation

fEtm-EmdS =0 (m # n)

which does hold between the modes in waveguides with
homogeneous media. However, its extension does not
exist, as we explained at the end of Section III. There-
fore, in the above discussion, we had to use Q(m, n) =0,
(m>%n) which is equivalent to (11).

VII. EXAMPLE

As an example of the removal of degeneracy, let us
consider the waves traveling along two parallel wires
above ground. The configuration is shown in Fig. 1. If
we assume that the wires as well as the ground are per-
fect conductors, then the fields E; and H, are expressed
in terms of a scalar potential function ¢ which satisfies
Laplace’s equation V2 =0 (in .S) and the boundary con-
dition ¢ =constant (on /) (for each conductor we can
assign a different value):

E; = V¢,

1
H, = Zk X Vd’ (48)

0

where

Zy = ,Ui '
€

€ and uo are the dielectric constant and magnetic per-
meability of the space, respectively. Since there are two
wires whose potential can be specified independently,
there are two independent functions ¢ and correspond-
ingly two independent waves. Their propagation con-
stants are the same and given by

Yo = jw/ Bo€o.

The deviation Ay of the actual propagation constant v
from v, due to the wall impedances can be calculated by
inserting E; of (48) in (22). The final result is

a 2
f21 <—?> dl
1 on

¥ — vo’

> 2Z
v ’ f (V)2dS

Eq. (49) can be rewritten in terms of the currents Z; and
I, flowing through the wires:

Ze /411[12 + 2A412[]IZ + A22[22
2 Zud? + 220D A Zsod st

Ay (49)

Ay (50)
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where

Zy 2h

Zin = ZLog = —logﬁ
2w 7
Zy d

Zis = Zyn = —log—
2w c 51)

N)

1 Z, 1

Ay = Agg = — A = —
2h 7, 2r
2h

A= An=-—"
d2

Z, and Z, are the characteristic impedances of the
ground and wires, respectively.

2r

e—c—%

s

O [

{

Fig. 1—Wire configuration.

Since the original waves are degenerate, for the cal-
culation of Ay the ratio between Iy and I, must be chosen
so that v?, hence Ay, has a stationary value. The method
of undetermined multiplier shows that this condition is
satisfied when

I,.=— 1, (52)
and when
The corresponding Avy’s are given by
Ze Ay — Ap .
Ay, = — —— (54)
2r Z1n— Zy
and
Ze fi + A
Ayy = — = = (55)
2r Zu+ Zp
respectively.

When arbitrary currents [, and 75 are flowing through

the wires, they must be interpreted as shown in Fig. 2,
i.e., the sum of the two independent modes given by
(52) and (53). Since the propagation constants of these
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1 1 11 i 1~1z I+1; IL+I;
' 2 2 2 2 2
& @ ® o e ®
Vi +
(0] [o] o]
~(Lt 12) 0 - (14 12)

Fig. 2—Decomposition into two independent modes.

]
|
1
]
]
1
1
:
1 Current Ratio

Fig. 3—a given by (1) vs current ratio.

modes are not the same, the current ratio, hence the
field configuration, changes as the observation point
moves along the wires. Only the currents satisfving
either (52) or (53) can keep their ratio unchanged.

If the current ratio is real, the real part of the right-
hand side of (50) gives exactly the same expres-
sion as that of (1). Depending on the current ratio,
therefore, (1) gives a value something like Fig. 3. How-
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ever, only two values, G, and ami,, give the true at-
tenuation constants corresponding to the independent
modes discussed above. Thus, we see that a special care
must be taken when (1) is applied to degenerate modes,
even though they are TEM modes. Collin® neglected the
possibility of degeneracy in his discussion and hence
failed to clarify the point mentioned above.

VIII. CoNcLUSION

A variational expression for the propagation constant
of the waves in waveguides with inhomogeneous media
and with wall impedance is presented. Using this ex-
pression, the shift of the propagation constant due to
the wall impedances is calculated. It is also clarified how
the removal of degeneracy takes place. The result is
compared with that of a perturbation theorem. In
Section VII, taking degenerate TEM modes as an
example, it is shown that appropriate choices of field
configuration are necessary when the formula for the
attenuation constant derived from the conservation of
energy is applied to degenerate modes.
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